Elizabeth Papish

Elizabeth Papish

Associate Professor


  • PhD, Columbia University, 2002
  • M.Phil, Columbia University, 2001
  • MS, Columbia University, 1998
  • BA, Chemistry, Cornell University, 1997


  • Papish Group


We are interested in catalysis as applied to green chemistry. In particular, we make new catalysts for carbon dioxide reduction to form carbon monoxide in an NSF funded project. Carbon dioxide reduction is a key step in formation of liquid fuels from solar energy. This project aims to make carbon dioxide reduction more efficient and more sustainable through the design of new pincer ligands for transition metal catalysts. See our Chem. Commun. papers published in 2017 and 2018 (listed below) for more details. This work is collaborative with Jared Delcamp of the University of Mississippi and Edwin Webster of Mississippi State University.

Furthermore, my group has had a long-standing interest in catalysis of other challenging reactions including water oxidation, hydrogenation of challenging substrates (including CO2), and C-H activation.

In a separate project, we are using ruthenium complexes for light-activated anticancer studies. Our studies have shown that visible light can activate the ruthenium complexes and make toxic byproducts. This can be used to target cancerous cells. This project is collaborative with Yonghyun (John) Kim in Chemical and Biological Engineering. See our Inorg. Chem. 2017 paper (listed below) for more details.

  • New Projects – talk to Dr. Papish about this in person, as this work is in progress.  We are always coming up with new ideas and new uses for our ligands and complexes.  If you are a student interested in our group, stop by and ask what new projects we have recently started.
  • For more information on the above projects see our research page.

Selected Publications

Burks, D. B.; Davis, S.; Lamb, R. W.; Liu, X.; Rodrigues, R. R.; Liyanage, N. P.; Sun, Y.; Webster, C. E.; Delcamp, J. H.; Papish, E. T. “Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction” Chem. Commun. 2018, 54, 3819-3822. for cover artwork.

Boudreaux, C. M.; Liyanage, N. P.; Shirley, H.; Siek, S.; Gerlach, D. L.; Qu, F.; Delcamp, J. H.; Papish, E. T. “Ruthenium(II) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction” Chem. Commun. 2017, 53, 11217-11220. DOI: 10.1039/c7cc05706g

Qu, F.; Park, S.; Martinez, K.; Gray, J.L.; Shazna Thowfeik, F.; Lundeen, J. A.; Kuhn, A. E.; Charboneau, D. J.; Gerlach, D. L.; Lockart, M. M.; Law, J. A.; Jernigan, K. L.; Chambers, N.; Zeller, M.; Piro, N. A.; Kassel, W. S.; Schmehl, R. H.; Paul, J. J.; Merino, E. J.; Kim, Y.; Papish E. T. “Ruthenium Complexes are pH-Activated Metallo Prodrugs (pHAMPs) with Light Triggered Selective Toxicity Towards Cancer Cells” Inorganic Chemistry, 2017, 56, 7519-7532.  DOI: 10.1021/acs.inorgchem.7b01065

Siek, S.; Burks, D. B.; Gerlach, D. L.; Liang, G.; Tesh, J. M.; Thompson, C. R.; Qu, F.; Shankwitz, J. E.; Vasquez, R. M.; Chambers, N.; Szulczewski, G. J.; Grotjahn, D. B.; Webster, C. E.;Papish, E. T. “Iridium and Ruthenium Complexes of NHC and Pyridinol Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal” Organometallics, 2017, 36, 1091-1106. DOI: 10.1021/acs.organomet.6b00806.

Siek, S.; Dixon, N. A.; Kumar, M.; Kraus, J. S.; Wells, K. R.; Rowe, B. W.; Kelley, S. P.; Zeller, M.; Yap, G. P. A.; Papish, E. T. “The Synthesis of Biomimetic Zinc Complexes for CO2 Activation and the Influence of Steric Changes in the Ttz Ligands (Ttz = Tris(triazolyl)borate)” Eur. J. Inorg. Chem., 2016, 2495-2507DOI: 10.1002/ejic.201500819.

Serpas, L.; Baum, R. R.; McGhee, A.; Nieto, I.; Jernigan, K. L.; Zeller, M.; Ferrence, G. M.; Tierney, D. L.; Papish, E. T. ““Scorpionate-Like” Complexes that are Held Together by Hydrogen Bonds: Crystallographic and Spectroscopic Studies of (5-methyl-3-NH(t-butyl)-pyrazole)nMX2 (M = Zn, Ni, Co, Mn; n = 3, 4; X = Cl, Br)” Polyhedron, 2016, 114, 62-71, in special issue on “Undergraduate Research”, published online. DOI: 10.1016/j.poly.2015.10.003.

Gerlach, D. L.; Bhagan, S.; Cruce, A. A.; Burks, D. B.; Nieto, I.; Truong, H. T.; Kelley, S. P.; Herbst-Gervasoni, C. J.; Jernigan, K. L.; Bowman, M. K.; Pan, S.; Zeller, M.; Papish, E. T. “Studies of the Pathways Open to Copper Water Oxidation Catalysts Containing Proximal Hydroxy Groups During Basic Electrocatalysis” Inorganic Chemistry, 2014, 53 (24), 12689–12698. DOI: 10.1021/ic501018a.

Marelius, D. C.; Bhagan, S.; Charboneau, D. J.; Schroeder, K. M.; Kamdar, J. M.; McGettigan, A. R.; Freeman, B. J.; Moore, C. E.; Rheingold, A. L.; Cooksy, A. L.; Smith, D. K.; Paul, J. J.; Papish, E. T.; Grotjahn, D. B. “How Do Proximal Hydroxy or Methoxy Groups on the Bidentate Ligand Affect (terpy)Ru(N,N)X Water Oxidation Catalysts? Synthesis, Characterization, and Reactivity at Acidic and Near-neutral pH” European Journal of Inorganic Chemistry, 2014, 676-689. Invited for special issue on water oxidation catalysis. DOI: 10.1002/ejic.201300826.

Dixon, N. A.; McQuarters, A. B.; Kraus, J. S.; Soffer, J.; Lehnert, N.; Schweitzer-Stenner, R.; Papish, E. T. “Dramatic Tuning of Ligand Donor Properties in (Ttz)CuCO through Remote Binding of H+ (Ttz = tris(triazolyl)borate” Chem. Commun., 2013, 49, 5571-5573.

DePasquale, J; Nieto, I.; Reuther, L. E.; Herbst-Gervasoni, C. J.; Paul, J. J.; Mochalin, V.; Zeller, M.; Thomas, C. M.; Addison, A. W.; Papish, E. T. “Iridium Dihydroxybiypyridine Complexes show that Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation” Inorg. Chem., 2013, 52, 9175-9183, chosen for cover